
www.manaraa.com

Comparing modeling approaches for assessing

priorities in international agricultural research

Athanasios Petsakos1,*, Guy Hareau1, Ulrich Kleinwechter1,

Keith Wiebe2 and Timothy B. Sulser2

1Social and Nutrition Sciences Division, International Potato Center (CIP), Avenida La Molina 1895, Lima 12, Peru

and 2Environment and Production Technology Division, International Food Policy Research Institute (IFPRI),

2033K St. NW, Washington, DC 20006, USA

*Corresponding author. Email: t_petsakos@yahoo.gr

Abstract

This article examines how the estimated impacts of crop technologies vary with alternate methods

and assumptions, and also discusses the implications of these differences for the design of studies

to inform research prioritization. Drawing on international potato research, we show how foresight

scenarios, realized by a multi-period global multi-commodity equilibrium model, can affect the esti-

mated magnitudes of welfare impacts and the ranking of different potato research options, as

opposed to the static, single-commodity, and country assumptions of the economic surplus model

which is commonly used in priority setting studies. Our results suggest that the ranking of technolo-

gies is driven by the data used for their specification and is not affected by the foresight scenario

examined. However, net benefits vary significantly in each scenario and are greatly overestimated

when impacts on non-target countries are ignored. We also argue that the validity of the single-

commodity assumption underpinning the economic surplus model is case-specific and depends on

the interventions examined and on the objectives and criteria included in a priority setting study.

Key words: priority setting; foresight analysis; economic surplus model; international agricultural research

1. Introduction

There is a growing demand from public and private donors and

other decision makers for more efficient spending of resources used

in agricultural research. At the same time, tightened budgets have

led agricultural research organizations to formalize priority setting

approaches for the identification of research activities with the high-

est possible impact in terms of economic efficiency, poverty allevi-

ation, and other institutional, social, and environmental objectives,

to inform decisions on the optimal allocation of research funds.

Priority setting increases the credibility and objectivity of the deci-

sions taken at the various institutional levels (institutes, programs,

and projects) and offers a systematic way of planning and managing

research which is consistent with informed scientific opinion and

stakeholder needs (Bantilan and Keatinge 2007).

Various qualitative and quantitative approaches have been used

for priority setting, including scoring methods, congruence rules,

benefit–cost analysis, economic surplus models, and multi-objective

programming, each with distinct advantages and drawbacks

compared to the others (Schumway 1977; Braunschweig 2000).

Priority setting can be limited to the subjective ranking of the vari-

ous research options using expert judgement, or it may involve for-

mal ex ante impact assessment to quantify the potential benefits of

alternative technologies. In the latter case, an economic surplus

model combined with discounted benefit–cost measures is probably

the most common method (Alston et al. 1998). In its simplest form,

the economic surplus model is a comparative static representation of

the supply and demand equilibrium for a single market (commod-

ity). It can estimate welfare changes for producers and consumers

brought about by policies or technological innovations. Extensions

to the basic model include price and technology spillovers among

countries or regions connected via trade (Davis et al. 1987;

HarvestChoice 1995), while Geographical Information Systems

have also been proposed for identifying similar agroecologies in

neighboring regions to quantify the direction and intensity of these

spillover effects (You and Johnson 2010).

The economic surplus model has been widely applied in ex ante

impact assessment studies to inform decisions for defining priorities,
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both in national research programs (Dey and Norton 1992;

Mutangadura and Norton 1999), and in International Agricultural

Research Centers (Briones et al. 2008; Hareau et al. 2014). One im-

portant limitation of the approach is that it offers a static representa-

tion of the modeled commodity market and thus ignores the

socioeconomic and biophysical dynamics which can affect the ex-

pected impact of a given intervention. Although some of its imple-

mentations allow for an explicit representation of dynamics in

production and consumption (HarvestChoice 1995), the economic

surplus model is not able to analyze well-structured foresight scen-

arios, like those proposed by the Intergovernmental Panel on

Climate Change (IPCC) which describe plausible future pathways in

population, income, climate, and other drivers of change.

Furthermore, with some few exceptions (Davis et al. 1987), the ana-

lysis of agricultural research priorities at the regional or interna-

tional level with economic surplus models either ignores welfare

impacts on horizontally related markets (countries not targeted for

the release of new technologies) or does so aggregately, probably be-

cause it is difficult to estimate the individual demand and supply

curves in each country (Alston et al. 1998). Finally, the economic

surplus model cannot directly account for the effects of techno-

logical innovations on multiple commodity markets. Instead, cross-

price effects are implicitly represented in the assumed supply and

demand elasticities of the commodity examined (Omamo et al.

2006). In this regard, several studies have used partial or general

equilibrium models to estimate the direct and indirect welfare im-

pacts of new technologies (Rosegrant et al. 2014; Islam et al. 2016),

yet not explicitly for ranking specific investment options. One pos-

sible reason is that multi-commodity equilibrium analyses seem to

be beyond the scope of priority setting exercises (Byerlee 2000).

Given the aforementioned limitations, this article seeks to pro-

vide a quantitative assessment of whether the relaxation of the

related assumptions in the economic surplus approach adds value to

a priority setting exercise and can therefore justify a shift from the

standard quantitative paradigm in studies aiming to inform research

prioritization. More precisely, we examine how the simulated dy-

namics of a quantitative foresight scenario analysis can influence the

returns to investment and the ranking of different crop research op-

tions, and to what extent the consideration of other countries can af-

fect the welfare results, as opposed to focusing on target countries

only. We also look at multiple commodity markets to assess the im-

portance of cross-price effects which are ignored under the simple

economic surplus model approach.

Our study builds on the analysis of research priorities for potato

which was carried out by the CGIAR Research Program (CRP) on

Roots, Tubers, and Bananas (RTB) (Hareau et al. 2014) and consti-

tutes an analytical example of using economic surplus models for in-

forming priority setting decisions in international agricultural

research. In this article, we replicate the RTB exercise and then esti-

mate the expected global welfare impacts of four of the same potato

research options under different foresight scenarios with the

IMPACT model (International Model for Policy Analysis of

Agricultural Commodities and Trade), which is a recursive dynamic

multi-commodity partial equilibrium representation of the global

agricultural sector (Robinson et al. 2015), developed at the

International Food Policy Research Institute (IFPRI). For examining

the role of dynamics, we compare the welfare results from foresight

scenarios simulated with IMPACT against a counterfactual which is

created by keeping constant all model parameters that are intrinsic-

ally dynamic, like population, income, and climate impact on yields.

This counterfactual therefore represents a static scenario of technol-

ogy adoption and serves as a proxy for the economic surplus model,

since it only considers a research-induced increase in crop yields

which finally leads to an endogenously calculated outward shift of

the supply function, ceteris paribus. By also looking at different

result aggregation levels (target countries and global) and the magni-

tude of cross-price effects, we examine how the underlying assump-

tions of the economic surplus model can influence the results of a

priority setting study.

In the next section, we introduce the IMPACT model and present

the four potato research options compared in this article. In Section

3 we explain the approach for simulating a productivity shock with

IMPACT and detail the assumptions behind the different foresight

scenarios considered. Results are presented in Section 4, followed by

a discussion in Section 5 on implications of our findings for studies

aiming to inform research prioritization.

2. Materials and methods

2.1 The IMPACT partial equilibrium agricultural

sector model
IMPACT is an integrated modeling framework which combines eco-

nomic, crop, livestock, and water models designed for the analysis

of future developments of global agricultural production, demand,

trade, and prices up to 2050. The model has been used extensively

in analyses related to projections of global, regional, and national

food supply and demand (Pinstrup-Andersen et al. 1997; Huang

et al. 1999; Pandya-Lorch and Rosegrant 2000), commodity-specific

analyses (Scott et al. 2000), or analyses of issues related to the agri-

cultural sector, such water scarcity (Rosegrant and Cai 2001) and

climate change (Nelson et al. 2010; Islam et al. 2016). IMPACT

uses FAOSTAT and other data, and its projections are based on re-

gional and global scenarios that draw on the fifth assessment report

of the IPCC. A detailed description of the IMPACT modeling frame-

work and underlying equations can be found in Robinson et al.

(2015).

The food production module in IMPACT comprises 62 agricul-

tural commodities and distinguishes 159 geopolitical regions and

154 water basins globally, which combine to 320 geographic ‘food

production units’ (FPUs). Crop production takes place at the FPU

level and in modeling terms is defined as the product of response

functions for crop yields and harvested areas. Cropland is divided

between irrigated and rainfed areas, and the crop share allocations

are determined by a market which simulates the equilibrium be-

tween total land supply and the area demanded by each crop. Yields

depend on exogenous trend parameters, input and crop prices, and

possible water stress or climate-induced shocks. On the demand

side, a set of separate functions is used to represent different demand

components for each country and commodity, namely, food, feed,

biofuels, crush demand for oilseeds, and other uses, which add up to

total demand for any single crop. Whereas all demand types are a

function of the commodity’s own price, demand for food addition-

ally depends on the prices of other competing commodities (through

cross-price elasticities), but also takes into account assumed changes

in population and per capita income.

The individual regions for which supply and demand is calcu-

lated are connected to each other via trade. Net trade adds to do-

mestic production to finally equilibrate domestic supply and

demand. For each year simulated by the model, global demand and
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supply for every commodity are brought into equilibrium and deter-

mine an endogenous world market price which leads to global mar-

ket clearing. The domestic producer and consumer prices for all

commodities in all regions are derived from this world equilibrium

price. When an exogenous shock is applied to the model, like in-

creases in crop productivity as done in this study, the world market

price adjusts to those changes to establish new market equilibrium

and produce a new set of country-level prices, demand, supply, and

trade (Scott et al. 2000).

IMPACT also includes a post-simulation module to estimate the

welfare impacts of a given intervention scenario in relation to a ref-

erence (baseline) scenario. The estimations comprise producer sur-

plus, consumer surplus, and net welfare effects to the agricultural

sector. Further, the costs of a particular intervention, if available,

can be taken into account to calculate the internal rate of return

(IRR) as a measure of returns on investment. Consumer surplus is

estimated by using the stored equilibrium point and the model’s

own price demand elasticities to calculate a slope and price intercept

parameter to create a linear demand function for each commodity.

In contrast, estimation of producer surplus is not straightforward

because supply in IMPACT is modeled as the product of yield and

area response functions and not through a traditional supply curve

which reflects a producer’s marginal cost curve. For this reason, a

synthetic supply curve is created which expresses yields and har-

vested areas as a function of crop prices. Such supply curves for each

commodity are created for every land type (irrigated, rainfed) in

each FPU and are then aggregated at the national level.1

2.2 Proposed potato technologies
The research options (technologies) analyzed are (1) improved po-

tato seed systems, (2) potato varieties resistant to bacterial wilt, (3)

virus-resistant potato varieties, and (4) varieties resistant to late

blight.2 These technologies were previously examined in the RTB

analysis of research priorities and were identified by RTB via a

multistage participatory process (Kleinwechter et al. 2014). For each

research option, specific target countries in Africa, Asia, and Latin

America were also identified. Their selection was based on the cur-

rent distribution of the constraints addressed by the different re-

search options and on considerations about current and future

target geographical regions for international potato research for de-

velopment, as carried out by RTB, the International Potato Center

(CIP), and partners.

The quantification of every research option in each target coun-

try was based on expert judgment and consists of assumptions re-

garding the probability of research success, the expected adoption

rates, and the expected changes in yield and input costs.3 An import-

ant note is that the maximum adoption rates and the probability of

success should ideally be defined as empirical distributions

(Alston et al. 1998). However, the RTB priority assessment study

only provides country-specific point estimates for both parameters,

elicited from expert workshops, and considers a ‘lower’ and a ‘high-

er’ adoption scenario to partially account for the uncertainty on the

adoption process. To simplify the analysis, in this article we do not

assume any variability for either the maximum adoption rates or the

probability of success. All adoption data come from the ‘higher’

adoption scenario, and we define the probability of success as the

mean of the odds for achieving the research objectives.

Further assumptions were made on the costs of research, devel-

opment, and dissemination. Annual costs for research and develop-

ment are an estimation of costs incurred by CIP and by the national

agricultural research systems. For the dissemination cost, a fixed fig-

ure per hectare is assumed for the marginal area of adoption. This

cost depends on the type of technology analyzed. Varietal technolo-

gies are assumed to require an investment of US$50 per hectare of fi-

nally adopted area, while more knowledge-intensive technologies,

e.g. seed systems interventions analyzed herein, are assumed to re-

quire US$80 per hectare. Table 1 provides a summary of the tech-

nologies, while Sections 2.1.1–2.1.4 give a more detailed description

for each research option and its parameterization as an adoption

scenario. Detailed lists with the target countries and parameter val-

ues for each research option are provided as Supplementary

Material.

2.2.1 Seed systems: Improving seed production and distribution

Poor seed quality is a major constraint to potato yields in many re-

gions (Gildemacher et al. 2009; Haverkort and Struik 2015). The

improvement of potato seed production and distribution through

the development and implementation of improved seed systems re-

duces yields losses from seed-borne diseases and improves farmers’

access to seed potato tubers of higher physical and physiological

quality. The quantified impacts of the improved seed systems tech-

nology modeled here across 27 target countries are assumed to in-

clude an increase in potato yield of 20% and a rise in production

costs by the same percentage as a result of the higher cost for quality

Table 1. Summary of technology scenarios

Technology parameters Improved seed

systems

Bacterial

wilt-resistant

varieties

Virus-resistant

varieties

Late blight-

resistant

varieties

Research lag (years) 3 10 2 2

Adoption lag (years) 5 10 10 10

Countries targeteda 27 22 27 32

Adoption ceiling (%) 3–20 10–60 15–40 10–60

Total annual R&D costs (million US$) 8 4 8 16

Dissemination costs (US$/ha) 80 50 50 50

Maximum expected yield change (%) 20 10–30 40 12–32

Production cost change (%) 20 0 �5 �2 to �5

Probability of success (%) 60–80 50 70 80

aSee Supplementary Data for country-level specifications.

Source: Hareau et al. (2014).
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seed and the increased use of other inputs. The research lag was set

to 3 years, reflecting the investment that CIP has undertaken in pre-

vious years to develop methods and approaches for providing qual-

ity seed materials to farmers. Improved potato seed systems

therefore represent a relatively well-developed technology which re-

quires only some adjustment to local conditions in the target coun-

tries. Maximum adoption rates vary across the target countries from

3 to 20%, while the probability of research success is between

60 and 80%, based on the experience of CIP in seed systems work in

the respective countries.

2.2.2 Potato varieties resistant to bacterial wilt

Potato varieties resistant to bacterial wilt aim at reducing yield

losses caused by the pathogenic bacterium Ralstonia solanacearum,

which is a major biotic constraint in many developing countries,

particularly in Africa (Gildemacher et al. 2009) and in the Andean

region (Salazar 2006). The improved varieties are expected to in-

crease yields in target countries by 10–30%, based on expert opin-

ions about the incidence of the disease in each country. Since no

chemical treatment is available for bacterial wilt, adoption is not ex-

pected to bring about input use changes, and thus production costs

are assumed to remain constant. The technology has a research lag

of 10 years, which is the longest among all four research options,

since breeding efforts targeted at this trait need to be re-initiated.

The probability of research success is assumed to be 50% because

the development of bacterial wilt-resistant varieties requires more

upstream research, and success is therefore more uncertain than for

the other technologies considered.

2.2.3 Virus-resistant potato varieties

Viruses are considered the most important biotic constraint for seed

potato. Virus-resistant potato varieties aim at reducing yield losses

caused by potato virus diseases, namely, potato virus Y, potato leaf

roll virus, potato virus S, and potato virus X. Although some virus

resistance has already been achieved, this technology aims at intro-

ducing even higher levels of virus resistance in future potato vari-

eties. The impact pathway of virus-resistant potato varieties

partially overlaps with the seed system technology in the develop-

ment of high-quality virus-free potato seed. The technology further

assumes high levels of virus resistance during the crop’s entire life

cycle, and therefore it is expected to lead to the highest yield in-

creases of all four options assessed. In addition, a small reduction in

production costs of 5% across all countries is also assumed. This re-

flects potentially lower costs for seed replacement, since virus-resist-

ant varieties are less prone to seed degeneration, and also lower

labor costs due to reduced need for roguing infected plants. The de-

velopment of virus-resistant varieties is rather complex, and there-

fore the estimated probability of success is assumed to be 70%.

Since varieties with lower degrees of virus resistance are already

available at CIP, the diffusion of the technology can start after a

comparatively short research lag of only 2 years.

2.2.4 Late blight-resistant potato varieties

Yield losses from late blight (Phytophtora infestans) are still con-

sidered to be the most important biotic constraint on potato produc-

tion worldwide (Birch et al. 2012). Breeding for late blight-resistant

varieties at CIP began in 1975, and today it is the primary trait of

one of the two major breeding populations of the Center (the other

being virus resistance). Although late blight-resistant varieties have

already been developed and released by CIP, continuous breeding ef-

forts are necessary since resistance typically breaks down a few years

after the varieties are introduced into the field (Thiele et al. 2008).

Maximum rates of adoption for late blight-resistant varieties in

the 32 target countries range from 10 to 60% and the expected yield

gains range from 12 to 32%. This technology also entails cost reduc-

tions as a result of reduced use of fungicides. However, anecdotal

evidence in some regions where late blight-resistant varieties are al-

ready cultivated reveals that farmers tend to keep spraying as if the

varieties were susceptible. Therefore, the 5% cost reductions

assumed reflect only a small proportion of the full potential that can

be achieved in experimental trials. Since late blight-resistant vari-

eties have been an important part of CIP’s research programs for a

long time, a probability of success of 80% is given to this research

option.

3. Model simulations

3.1 Simulating the adoption and the productivity

impacts of new technologies
To simulate the effects of the selected crop productivity improve-

ment technologies in the IMPACT model, different technologies can

be defined at the FPU level. Each technology can occupy a specific

share of the total production area dedicated every year to a particu-

lar crop in each FPU, and its adoption is modeled through the imple-

mentation of a logistic or linear diffusion curve which can be

specified and parameterized prior to running the model. To simulate

the yield advantage of a new technology over an old one, we appro-

priately modify the crop yield response functions included in the

model. More precisely, in every FPU n, the yield equation for crop j

and land type k (irrigated or rain-fed) for each year is expressed as:

Yj;n;k¼YIntj;n;k�YInt2j;n;k�YWatj;n;k

�YClimj;n;k�ðPSj;cÞe�PFg;

(1)

where YInt is base year crop yield reported in FAOSTAT (in tons

per ha), YInt2 is an exogenous crop yield growth parameter, YWat

is the exogenous yield shock from water stress (water availability),

YClim is the exogenous yield shock from climate change (increased

temperature), PS is the crop net price mapped to country c,4 e de-

notes the price response with respect to net price, PF represents pri-

ces of inputs, and g is the yield supply elasticity with respect to input

prices. The impact from water and climate shocks on yields is esti-

mated with the SUBSTOR potato growth model (Griffin et al. 1993)

in the DSSAT (Decision Support System for Agrotechnology

Transfer) farming system simulator (Jones et al. 2003), which is

linked to the IMPACT modeling suite. All parameters in Equation

(1) are specified as percentage changes over YInt. For example,

when climate and water shocks are not considered, YWat and

YClim take a value of one. More details about the yield equation

and the how the different types of shock are defined in IMPACT can

be found in Robinson et al. (2015).

The four potato technology options modeled here not only lead

to changes in yield but also include changes in input costs and are

contingent on the probability of success of the research efforts

undertaken. In traditional economic surplus models, such as those

proposed by Alston et al. (1998), the proportional shift in the supply

curve (kt) caused by a new technology in each target country at any

year t is calculated as:
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kt¼
DY

es
� DC

1þDY

� �
�p�At (2)

where DY is the percentage maximum yield change, es is the price

elasticity of supply, DC is the percentage input cost change, p is the

probability of success in research, and At is the adoption rate at year

t, which is given by the logistic function:

At ¼
Amax

1þ e�ðaþbtÞ for t¼1;2; . . .;T: (3)

In the above equation, Amax is the maximum adoption rate,

whereas a and b are parameters estimated using two points in the

adoption curve, namely, A0 and Amid which correspond to the initial

and the 50% adoption rate occurring at years t0 (year of initial

adoption) and tmid, respectively.

Although kt adequately describes the supply shift in an economic

surplus model, it cannot be applied in IMPACT because the supply

shift itself is endogenously calculated when determining the market

equilibrium and also incorporates feedback effects from other

related commodity markets (cross-price effects). The same applies to

the adoption rate and is specified prior to running the model. For

these reasons, instead of a supply shift, we focus on modifying par-

ameter YInt2 in Equation (1) which represents a non-price-induced

exogenous yield trend for a ‘baseline’ or ‘business as usual’ scenario

of productivity growth. Any factor that modifies—additively or

multiplicatively—the initial YInt2 values corresponds to a scenario

of accelerated growth in yields, such as that brought about by

technological innovations from agricultural research. Given that the

research-induced yield growth is conditional on the probability of

success and needs to take into account possible cost changes, we cal-

culated the percentage change of YInt2 (denoted by DYInt2) with

the following formula, which derives directly from the definition of

kt in Equation (2):

DYInt2¼DY � DC

1þDY

� �
�p: (4)

By introducing an increase in productivity at the release year of

the new technology, IMPACT simulates a new supply and demand

equilibrium for the entire adoption period. In modeling terms, this

one-time increase in productivity is sustained over time and trans-

lates to an upward shift of the projected yield growth over and

above the growth which is already assumed by the model (expressed

by YInt2). The difference between Equations (2) and (4) is that the

former represents an outward shift in supply in economic surplus

models, whereas Equation (4) represents an upward shift in the pro-

jected yield growth trend in IMPACT which finally leads to an en-

dogenously calculated supply increase when running the model.

3.2 Foresight scenarios
To compare alternative approaches, one static and three foresight

scenarios were specified for each of the four potato research options.

The initial year of the simulations for all scenarios was 2015, and

the length of the simulation period was 25 years, i.e. until 2040,

which included the research and dissemination phases for each tech-

nology, as defined in Section 2.

The foresight scenarios derive from combinations of

Representative Concentration Pathways (RCPs) and Shared

Socioeconomic Pathways (SSPs) adopted by the IPCC. RCPs repre-

sent alternative trajectories on emissions and concentrations of

greenhouse gases, and they are defined according to the radiative

forcing projected by the end the 21st century (Van Vuuren et al.

2011). The climate projections from each RCP are performed with

Earth System Models (ESMs) at various spatial and temporal reso-

lutions and are used as data inputs for other applications, such as in

crop modeling. SSPs are characterized by different challenges for

mitigation and adaptation to climate change, and their quantifica-

tion is based on assumed changes in income, population, and urban-

ization (among other variables) for most countries in the world

(O’Neill et al. 2014).

The RCP-SSP combinations selected for this article draw on the

compatibility matrix approach which has been proposed for de-

veloping scenarios in climate change analyses (Van Vuuren et al.

2014). More specifically, they are based on SSPs 1, 2, and 3 which

represent pathways of low, medium, and high overall socioeconomic

challenges, respectively. SSP1 is a ‘sustainability pathway’ with low

population growth rates, high economic growth, and high levels of

R&D investments that result in more environment-friendly technol-

ogies. SPP2 is a ‘middle of the road’ pathway that generally follows

historic trends, while SSP3 is a more pessimistic scenario with higher

population growth rates and more uneven economic growth

(O’Neill et al. 2014). In this exercise, we consider SSP2 to be the

benchmark pathway for which the initially assumed maximum

adoption rates apply. To be more consistent with the assumptions of

the different SSPs, Amax has been increased by 10% under SSP1 for

all countries and technologies to account for higher R&D invest-

ments, whereas for SSP3 it was reduced by a similar percentage.

Each of the above SSPs can be combined with a different RCP to

produce a consistent foresight scenario and to represent different

levels of mitigation and adaptation costs. For this article, we selected

RCP-SSP combinations that correspond to similar (medium) mitiga-

tion costs: SSP1-RCP4.5; SSP2-RCP6.0; and SSP3-RCP8.5.5 Among

the three RCPs examined, RCP8.5 is the most extreme climate path-

way, as it posits high green house gas emissions without mitigation

policies, whereas RCP4.5 is a more optimistic pathway which as-

sumes mitigation policies that lead to lower overall emissions. The

same SSP-RCP combinations have also been used by Wiebe et al.

(2015) in their analysis of the global climate change impacts on agri-

culture by 2050. Specific climate data for deriving the crop yield

shock parameter YClim in Equation (1) with DSSAT were retrieved

from the ESM model HadGEM2 (Hadley Centre Global

Environment Model version 2) (Jones et al. 2011).

For the static scenario, we set a zero-growth rate to all param-

eters that change over time and are either linked to RCP and SSP as-

sumptions (population, income, and climate-induced yield shocks)

or are intrinsic to the model structure (e.g. exogenous yield growth).

Thus, the static scenario approximated an economic surplus analysis

with cross-price effects included in a multi-market structure.

When modeling multiple commodity markets, the literature sug-

gests that welfare effects can be captured by examining the market

in which the distortions appear, since the equilibrium will also re-

flect changes in all other vertically or horizontally related markets

(Just et al. 2004). Therefore, to avoid double-counting (Alston et al.

1998), we estimated the expected welfare changes by focusing only

on the potato market. Welfare changes from every technology in

each scenario were estimated by comparing the outcomes against a

baseline that involved an initial model run under the same scenario

but without any productivity shifts. The baseline for the static scen-

ario produced the same result for every year of the adoption period,

since all dynamic elements of the model were held constant. The re-

sults were then aggregated (1) for all countries and (2) for target
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countries only, and we estimated the net present value (NPV) of the

net welfare benefits (sum of consumer and producer surplus minus

research and dissemination costs), the IRR, and the modified in-

ternal rate of return (MIRR) of each research option with both ag-

gregation methods.6

4. Results

Table 2 reveals that the ordering of the different technologies in

terms of net benefits is the same across country groups for all four

scenarios, and it is also identical to what is reported in the original

RTB study (Hareau et al. 2014); late blight-resistant varieties pro-

duce the highest welfare benefits, followed by virus resistance, bac-

terial wilt resistance, and improved seed systems.7 The ordering of

the technologies according to their MIRR is slightly different, yet

still consistent across all country groups and scenarios, with the

virus-resistant varieties yielding the highest rate of return. In con-

trast, the ordering of the technologies according to their IRR is not

the same between country groups, since improved seed systems pro-

duce a higher IRR than bacterial wilt-resistant varieties when only

target countries are considered. The previous results suggest that the

ordering of the different technologies, according to the three meas-

ures of investment performance used in this article, is independent

of the foresight scenario examined, but it may be affected by the ag-

gregation method employed.8

Although changes in consumer surplus are unambiguously posi-

tive for all technologies everywhere, potato producers in non-target

countries suffer significant surplus losses because they face lower

world prices without the benefit of higher yields. Lower prices are a

disincentive for potato production and lead to decreases in yields

and in land allocated to potato cultivation (Table 3). For target

countries, the technology-induced supply increase is greater in effect

than the decrease in world prices, leading to a positive producer sur-

plus change. The difference in net benefits among country groups is

particularly pronounced for the improved seed systems technology,

and it is the principal reason for the inconsistent ordering of the dif-

ferent research options according to their IRR. Furthermore, im-

proved seed systems are assumed to have short research and

adoption lags, increased production costs, and the highest dissemin-

ation costs among all four technologies. These assumptions lead to

the concentration of negative cash flows early in the beginning of

the simulated 25-year period, thus yielding lower net benefits and

IRR values compared to technologies with more uniformly distrib-

uted costs.

The static scenario also produces negative net benefits for the im-

proved seed systems technology when all countries are considered.

Although from an investment viewpoint this result may suggest that

improved potato seed systems, as specified in this scenario, are not a

reasonable research option, it should be viewed with caution, as it

contradicts common agronomic knowledge that low-quality seed

constrains the expression of the crop’s full yielding ability

(Haverkort and Struik 2015). In fact, negative net benefits are a dir-

ect consequence of the underestimation of the welfare impacts of all

technologies under the static scenario. More precisely, Table 2

shows that the disparity in net benefits is mainly driven by consumer

surplus, which in the static scenario is less than half of those seen in

each of the foresight scenarios and can be explained by the static de-

mand which ignores the expected growth in population and income.

Table 2. Global economic impacts and benefit–cost results of potato research options under different scenarios

Benefit-cost indicators All countriesa Target countriesa

Static SSP1-RCP4.5 SSP2-RCP6.0 SSP3-RCP8.5 Static SSP1-RCP4.5 SSP2-RCP6.0 SSP3-RCP8.5

Improved seed systems

Producer surplus �264 �561 �504 �493 158 279 258 230

Consumer surplus 300 790 696 687 127 369 328 324

Net welfare benefits �24 156 125 131 226 575 517 490

IRR 0.04 0.27 0.25 0.25 0.42 0.60 0.58 0.57

MIRR 0.07 0.16 0.15 0.17 0.20 0.26 0.25 0.25

Bacterial wilt-resistant varieties

Producer surplus �378 �916 �785 �782 198 352 317 262

Consumer surplus 529 1,450 1,240 1,253 202 686 586 592

Net welfare benefits 111 488 411 427 361 992 859 811

IRR 0.22 0.33 0.32 0.32 0.32 0.40 0.39 0.39

MIRR 0.17 0.23 0.23 0.23 0.22 0.27 0.26 0.26

Virus-resistant varieties

Producer surplus �1,923 �3757 �3,212 �3,121 926 1,367 1,222 1,015

Consumer surplus 2,847 6,110 5,204 5,110 1,138 2,923 2,496 2,461

Net welfare benefits 892 2,316 1,957 1,957 2,032 4,253 3,684 3,444

IRR 0.70 0.92 0.88 0.88 0.98 1.18 1.14 1.12

MIRR 0.29 0.33 0.33 0.33 0.34 0.38 0.37 0.37

Late blight-resistant varieties

Producer surplus �2,868 �6,149 �5,366 �5353 1,202 1,813 1,672 1,373

Consumer surplus 4,187 9,584 8,366 8,420 1,640 4,610 4,020 4,061

Net welfare benefits 1,254 3,358 2,928 2,999 2,776 6,346 5,620 5,366

IRR 0.62 0.84 0.81 0.81 0.87 1.07 1.04 1.03

MIRR 0.27 0.32 0.31 0.32 0.32 0.36 0.36 0.35

aResults are calculated as changes over the baseline (IMPACT simulations for each SSP-RCP combination without the enhanced technologies); all welfare

measures are expressed in NPVs, calculated with a discount rate of 10% and measured in million US$ at 2005 constant prices.
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Similar results are also observed on the production side, namely, for

potato yields, harvested land, and total supply in non-target coun-

tries, for which the static scenario generally underestimates the nega-

tive impacts of the new potato technologies (Table 3). As a

consequence, it leads to smaller producer surplus losses compared to

the foresight scenarios when all countries are considered.

All technology alternatives analyzed in this article demonstrate

higher areas of adoption under SSP3-RCP8.5 and consequently ex-

hibit higher dissemination costs (Table 4). Since the adoption rates

for each technology are exogenously defined as a percentage of the

total potato harvested area, this result also implies that the area allo-

cated to potato in target countries under SSP3-RCP8.5 is higher

Table 3. Impacts of improved technologies on world potato production in 2040 (% change from baseline)

Production indicators Improved

seed systems

Bacterial wilt-

resistant varieties

Virus-resistant

varieties

Late blight-

resistant varieties

Static scenario

Yield

Target countries 0.20 0.78 1.52 2.03

Non-target countries �0.02 �0.11 �0.20 �0.29

Global 0.05 0.16 0.41 0.52

Land

Target countries 0.04 0.23 0.25 0.49

Non-target countries �0.05 �0.21 �0.39 �0.56

Global �0.01 �0.02 �0.10 �0.07

Supply

Target countries 0.24 1.01 1.77 2.53

Non-target countries �0.07 �0.31 �0.59 �0.84

Global 0.04 0.18 0.31 0.44

SSP1-RCP4.5

Yield

Target countries 0.24 0.86 1.43 2.31

Non-target countries �0.04 �0.15 �0.24 �0.41

Global 0.07 0.25 0.48 0.74

Land

Target countries 0.03 0.23 0.18 0.40

Non-target countries �0.07 �0.30 �0.48 �0.79

Global �0.02 �0.03 �0.12 �0.14

Supply

Target countries 0.27 1.09 1.61 2.72

Non-target countries �0.11 �0.45 �0.72 �1.20

Global 0.05 0.22 0.36 0.61

SSP2-RCP6.0

Yield

Target countries 0.24 0.80 1.23 2.11

Non-target countries �0.04 �0.14 �0.21 �0.37

Global 0.07 0.23 0.39 0.66

Land

Target countries 0.03 0.21 0.19 0.38

Non-target countries �0.04 �0.27 �0.41 �0.71

Global �0.02 �0.03 �0.08 �0.11

Supply

Target countries 0.26 1.01 1.42 2.50

Non-target countries �0.10 �0.41 �0.62 �1.07

Global 0.05 0.20 0.31 0.54

SSP3-RCP8.5

Yield

Target countries 0.20 0.70 1.05 1.89

Non-target countries �0.03 �0.13 �0.20 �0.36

Global 0.07 0.23 0.38 0.68

Land

Target countries 0.02 0.16 0.14 0.28

Non-target countries �0.06 �0.26 �0.39 �0.69

Global �0.02 �0.04 �0.09 �0.15

Supply

Target countries 0.23 0.87 1.19 2.18

Non-target countries �0.10 �0.39 �0.58 �1.05

Global 0.05 0.20 0.29 0.53
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than in other scenarios. The same scenario also yields the highest net

benefits for all technologies, except for virus-resistant varieties

which produce higher returns under SSP1-RCP4.5. More specific-

ally, RCP8.5 is the driest climate change scenario among the three

examined and consequently leads to lower overall yields and smaller

producer surplus changes in target countries compared to the other

two scenarios. At the same time, SSP3 represents the highest popula-

tion growth among all SSPs (but also the slowest income growth)

and thus results in higher demand for staple agricultural commod-

ities. These assumptions are reflected in the higher consumer sur-

pluses observed under SSP3-RCP8.5. In contrast, SSP1-RCP4.5

represents a less rapid climate change scenario9 and assumes the

lowest population increase among all SSPs, thus leading to opposite

impacts than SSP3-RCP8.5.

Although our results reveal substantial differences in the net

benefits among the various scenarios, the parameters used in the spe-

cification of the technologies lead to rather limited supply growth in

target countries, which ranges from 0.23% (improved seed

systems—SSP3-RCP8.5) to 2.72% for the late blight resistance tech-

nology in the SSP1-RCP4.5 scenario (Table 3). Except for China

and India, target countries are responsible for only a small share of

the global potato production, and therefore the resulting decrease in

world prices is also small and estimated at around 0.1–1.8%, de-

pending on the technology and the scenario examined (Table 5).

The above changes in the potato sector are also expected to alter the

allocation of land among different activities, shift total supply, and

modify the clearing prices for other agricultural commodities. The

new equilibrium is determined by changes in relative prices (substi-

tution effects) and the increase in available income due to a fall of

consumer expenditures on potato as a result of its lower price.

Table 5 also presents the world price changes for rice and wheat,

which are crops commonly related to potato either in consumption

(rice in Asia) or in production (potato and winter cereals are grown

at the same time of the year, although they do not necessarily com-

pete for the same land). Our results show that the price feedback ef-

fects are small, which can be explained by the relatively smaller size

Table 4. Adoption of improved potato varieties

Adoption indicators Improved

seed systems

Bacterial wilt-

resistant varieties

Virus-resistant

varieties

Late blight-

resistant varieties

Dissemination costs (million US$)a

Static scenario 37.7 12.8 16.6 35.1

SSP1-RCP4.5 50.9 19.3 21.5 46.4

SSP2-RCP6.0 46.2 17.4 19.3 41.9

SSP3-RCP8.5 42.2 16.0 17.6 38.3

Total costs (million US$)a

Static scenario 59.6 39.9 31.9 65.6

SSP1-RCP4.5 72.8 46.4 36.7 77.0

SSP2-RCP6.0 68.0 44.4 34.6 72.5

SSP3-RCP8.5 64.1 43.0 32.9 68.9

Total adoption area (thousand hectares)

Static scenario 774.4 1,020.8 618.0 1,303.3

SSP1-RCP4.5 1,044.0 1,614.4 827.5 1,798.8

SSP2-RCP6.0 963.8 1,445.3 742.3 1,617.7

SSP3-RCP8.5 865.8 1,330.4 675.4 1,483.4

aReported results are NPVs expressed at 2005 constant prices and calculated with a discount rate of 10%.

Table 5. Impacts of potato technologies on world producer prices of potato and related commodities (% change from baseline)

Commodities Improved

seed systems

Bacterial wilt-

resistant varieties

Virus-resistant

varieties

Late blight-

resistant varieties

Static scenario

Potato �0.11 �0.48 �0.91 �1.30

Rice a a �0.01 �0.01

Wheat a a �0.01 �0.01

SSP1-RCP4.5

Potato �0.16 �0.66 �1.07 �1.78

Rice a a �0.01 �0.01

Wheat a �0.01 �0.01 �0.01

SSP2-RCP6.0

Potato �0.15 �0.60 �0.92 �1.59

Rice a a �0.01 �0.01

Wheat a a �0.01 �0.01

SSP3-RCP8.5

Potato �0.14 �0.58 �0.86 �1.55

Rice a a �0.01 �0.01

Wheat a �0.01 �0.01 �0.01

aLower than �0.01%.
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of the potato sector compared to cereals that dominate agricultural

production in target countries.10 Therefore, the role of foresight on

cross-price effects depends on the relative magnitude of the exam-

ined intervention.

5. Discussion

Our analysis reveals that introducing dynamics in the form of fore-

sight scenarios in this priority setting exercise does not affect the

ranking of the examined technologies according to their expected

net benefits or either measure of rate of return to investment. In fact,

the ordering of the different potato research options is identical to

the original RTB study which was based on a simple economic sur-

plus model. Therefore, foresight considerations in assessing research

options become irrelevant in this case, if the objective is simply to

provide an ordinal comparison of the returns from investing in dif-

ferent research options. However, foresight scenarios greatly affect

the estimated absolute level of welfare impacts. The discrepancy in

the estimated net benefits between the static and the foresight scen-

arios also suggests that simple economic surplus models may not al-

ways be appropriate for setting priorities and allocating resources

because such analyses typically rely on the NPV of net benefits of

each candidate activity. Given that the welfare impacts of each

examined technology vary significantly among the three foresight

scenarios, there seems to be scope in including foresight consider-

ations in priority setting exercises depending on the research object-

ive, especially when the uncertainty about climate change needs to

be explicitly accounted for.

Another aspect of the analysis sheds light on the shortcomings of

the use of single market economic surplus models in priority setting,

in which welfare impacts are typically calculated for target countries

only. According to our results, ignoring non-target countries leads

to an overestimation of net benefits by an order of almost two in all

simulation scenarios. This finding highlights the ‘accuracy versus

cost’ trade-off that economists face when carrying out such exer-

cises, which require the collection and consolidation of data and in-

formation from various sources and across different regions and

countries. It also raises concerns because priority setting studies in

international agricultural research do not always consider non-

target countries in their analysis. This may also have important im-

plications for resource allocation, not only among different research

activities but also among different social purposes in different world

regions. Notwithstanding the obvious challenges for modeling the

global agricultural sector, our results clearly show that priority set-

ting studies using economic surplus models should nonetheless ac-

count for the global welfare impacts of the examined interventions,

even if this can only be done aggregately by assuming a single mar-

ket for the rest of the world. The previous postulate applies to any

objective used in a priority setting study and not just to net benefits.

For example, nutritional security and poverty reduction have not

been considered in the present analysis, but they usually rank high in

policy agendas and are key determinants of resource allocation. The

consequences of a new agricultural technology on these two object-

ives will not be limited to target countries only but will bring about

global changes in food supply which must be also taken into

account.

The impact of the new potato technologies on other related com-

modities has also been found to be very small, which implies that

the single-commodity focus of the simple economic surplus model is

an acceptable assumption for the present analysis, given how the

examined potato technologies were specified. However, the added

value of a multi-commodity approach, compared to the simple eco-

nomic surplus model, depends on the extent to which one expects

cross-price effects. The added value will therefore be small for an in-

novation that affects a small or isolated market but can prove im-

portant for an innovation that affects a large market with close links

across countries and commodities. The major drawback of the

single-commodity model concerns the assessment of impacts related

to objectives that span across multiple commodity markets and can-

not be well represented by price changes alone. For instance, even if

individual cross-price effects are small (thus leading to similarly

small changes in supply), the assessment of non-economic impacts,

like nutritional security, still requires accounting for supply changes

in all agricultural commodities. Therefore, the objectives and criteria

included in a priority setting study determine the validity of the

single-commodity assumption, even in cases where the cross-price

effects of the examined interventions are expected to be limited.

All priority setting exercises are carried out in an ex ante frame-

work and make use of a set of assumptions regarding adoption and

productivity gains. As in the case of the original RTB study, values

for these parameters may come from various sources, which are usu-

ally qualitative in nature, and complement quantitative approaches

that can make more assumptions explicit and examine their validity

and importance in ranking research priorities. However, results are

also conditional on the validity of the assumptions regarding the

realization of the foresight scenarios, the calculation of the different

measures of investment performance, and the representation of the

global multi-market equilibrium with the IMPACT model. For ex-

ample, we have assumed different maximum adoption rates for the

three SSPs to account for the different underlying socioeconomic

conditions that may affect technology dissemination and adoption.

However, modeling results not reported in this article reveal that the

ordering of the technologies remains unaffected even if the max-

imum adoption rates for each technology are instead kept constant

across all SSPs.

We have implicitly assumed that there are no technological spill-

overs between countries and regions; yet such indirect effects are

possible and have already attracted much attention in the relevant

literature. Technological spillovers could mitigate partially—or

fully—the negative impacts on potato production in non-target

countries but could also reduce the positive impacts in target coun-

tries. In either case, the direction of changes in producer surplus

would still depend on the relative magnitude of productivity gains

and price decreases. Introducing spatial technology spillovers in

IMPACT is straightforward and may be part of future work that

also extends the present analysis to other commodities.

Another set of assumptions concerns the numerical value of

some key parameters in the IMPACT model which are subject to un-

certainty. For example, we have introduced a productivity shift by

modifying the exogenous yield growth rates in the model, which

themselves are estimated from historical trends and adjusted accord-

ing to expert judgment on regional potential for development of dif-

ferent commodities. We have used a single ESM to quantify the

different RCPs in terms of yield losses, although other ESMs would

probably produce different welfare results. Past experience, how-

ever, has shown that scenarios of alternative technologies usually

give consistent results across both RCPs and SSPs in terms of the dir-

ection and relative magnitude of impacts. The size, complexity, and

deterministic nature of IMPACT do not easily allow in-depth exam-

ination of model solution robustness across a broad set of
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parameters. For this reason, the definition of multiple consistent

foresight scenarios can also serve as a sensitivity analysis exercise

which can produce a band of plausible welfare outcomes for testing

some key modeling assumptions as a means to improve our under-

standing of the role of selected dynamic parameters in a foresight

study.

Our analytical framework does not capture all possible welfare

effects because it does not provide any information about possible

impacts on other economic sectors outside of agriculture, for ex-

ample the starch processing industry. Further work with general

equilibrium approaches is required to examine the economy-wide ef-

fects of introducing new crop technologies and to test whether such

elaborate models can better inform priority setting exercises. The

shortcoming of computable general equilibrium (CGE) models is

that they usually include an aggregate representation of the agricul-

tural sector which makes them unsuitable for examining crop-

specific technologies. In contrast, sector equilibrium models like

IMPACT can distinguish between multiple crop and livestock activ-

ities and are thus able to capture spillover price effects across differ-

ent commodity markets and regions, despite ignoring welfare

consequences on other economic sectors. A solution to overcome the

individual limitations of both types of models is to use them jointly

in a sequential way. Hence, the results of agricultural sector models

could be used as inputs in CGE models to estimate economy-wide

impacts. An example is the effort to couple IMPACT with CGE

models to tackle issues like poverty alleviation, which is difficult to

answer when only focusing on the agriculture sector (Robinson

et al. 2015).

6. Conclusions

Resource allocation depends on the relative importance that deci-

sion makers and donors attach to their funding objectives but also

on the available information regarding the expected impacts of re-

search. In this article, we show how economic surplus analyses of

the benefits of agricultural technologies can be incorporated in glo-

bal dynamic multi-commodity models (specifically the IMPACT

model). We argue that the assessment of research priorities which

considers dynamics in the form of foresight scenarios may offer

valuable insights on how possible biophysical and socioeconomic

changes may affect the welfare impacts of a given intervention. We

also show that limiting the analysis to target countries should be

avoided, as it may lead to an overestimation of the expected welfare

changes. On the other hand, the added value from the multi-market

analysis seems to be low when the examined interventions have only

small impacts on related commodity markets.

These findings suggest that the assumptions underpinning an

economic surplus model can seriously affect the estimation of the ex-

pected welfare impacts of the examined interventions. For interna-

tional agricultural research, in particular, where new technologies

target multiple countries and can have important direct and indirect

welfare impacts, global dynamic multi-commodity models provide a

more informative alternative to the economic surplus model ap-

proach. For this reason there is scope for including them in priority

setting studies, although they come at additional cost; their com-

plexity and their large set of assumptions for the representation of

the global agricultural sector and the quantification of foresight

scenarios may be a limiting factor for their wider use, especially

when considering the simplicity of the single-commodity economic

surplus model approach which provides a cost-effective way to

implement priority setting in times of tightened budgets for interna-

tional agricultural research. Improving the validity of these assump-

tions through better parameterization and stronger multi-

disciplinary collaboration is therefore necessary for increasing the

usefulness of such models in informing research prioritization and

decision-making.
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Notes
1. More information about how the different surplus measures

are calculated with IMPACT’s welfare module can be found

in Robinson et al. (2015).

2. The RTB exercise identified two more research options,

namely, the ‘Development of potato value chains’ and the

‘Intensification of cereal-based potato systems: the agile po-

tato’. These technologies are not considered in this article to

simplify the analysis.

3. This section and the description of the potato research options

draw on the original RTB priority assessment exercise

(Hareau et al. 2014).

4. The price parameters are country-specific and thus apply for

all FPUs in the same country.

5. The number accompanying the selected RCPs (e.g. 8.5) repre-

sents the radiative forcing assumptions for 2100 (in Watts

per m2), and can be interpreted as the intensity of the assumed

change in climate.

6. Although the MIRR was not reported in the original RTB

study, we calculate it in this article to address some of the

criticism related to the use of IRR as an indicator of profit-

ability. Specifically, the IRR assumes that the intermediate

cash flows are reinvested at a discount rate equal to the IRR

itself, which is considered unrealistic. In contrast, the calcula-

tion of the MIRR is based on the use of socially acceptable

discount rates for borrowing and investing and leads to lower,

albeit more plausible, rates of return compared to the IRR.

A very comprehensive discussion about the mathematical

properties, the underlying assumptions and the suitability of

the IRR and MIRR for the evaluation of R&D investments

can be found in Hurley et al. (2014, 2016) and Oehmke

(2016).

7. The original RTB study calculated the NPV of the expected

welfare benefits with discount rates of 5 and 10%. To sim-

plify the exposition of the results, in this article we only use a

discount rate of 10%. However, simulation results not
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reported here due to space limitations reveal that the technol-

ogy ordering does not change when a 5% discount rate is

assumed instead.

8. Priority setting by comparing the rate of returns seldom

makes sense as IRRs, and MIRRs do not consider the size ef-

fects that are shown with NPVs. The reason for presenting the

IRR- and MIRR-based ranking is to identify differences

between the modeling assumptions used (result aggregation

between target countries versus all countries).

9. Although RCP6.0 implies higher radiative forcing than

RCP4.5 by 2100, during our simulation period (until 2040)

RCP6.0 corresponds to a milder climate change pathway.

10. On average for 2012–14, harvested potato areas in target

countries amount at about 8.5% of rice areas and 13.5% of

wheat areas (FAO 2017).
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